

"Core" GV and Science Requirements in the Post-Launch Era

Walter A. Petersen

Earth Sciences Office, ZP-11 NASA Marshall Space Flight Center

walt.petersen@nasa.gov

L1 Science Requirements
Continued Science Themes

Acknowledgements: L1 Requirements WG, also P. Kirstetter, J. Wang, D. Wolff, R. Morris, S. Nesbitt, P. Gatlin, J. Tan, D. Moiseev, A. VonLerber

0

ص ۳

0

"Core" Science Framework

Convergence, Physical Consistency, Utility

Approaches

•Direct: National network comparisons-(Uncertainty- What/Where/When)

•Physical: Understand/Assess/improve (algorithm physical assumptions)

•Integrated: Impacts/utility with uncertainties (e.g., weather, climate, hydrology)

- Synergistic and adaptive 4-D use of relevant platforms
 - •long term, "heart beat", statistical sampling (national radar network)
 - Ability to "probe" at high space-time res. (research radars)
 - Reference to ground measurements (gauge and disdrometer networks)

Near Term: Verification of Science Requirements

GPM "Core" Satellite Science Requirements (Termed "Level -1" or "L1")

- DPR: quantify rain rates between 0.22 and 110 mm hr-1 and demonstrate the detection of snowfall at an effective resolution of 5 km.
- GMI: *quantify rain rates* between 0.22 and 60 mm hr-1 and *demonstrate the detection of snowfall* at an effective resolution of 15 km.
- Core observatory radar estimation of the D_m to within +/- 0.5 mm.
- At 50 km resolution, instantaneous rain rate estimate with bias and random error < 50% at 1 mm hr¹ and < 25% at 10 mm hr¹, relative to calibrated GV

Continental Scale Direct GV Network

http://gpm-gv.gsfc.nasa.gov/

- 1) Validation Network software creates a radar database (software available)
- ~60 CONUS and international radars geo-matched to DPR and radiometers
- Matched profiles of ground and satellite-based Z, rain rate, DSD, HID....

2) NOAA Multi-Radar Multi-Sensor (MRMS)

http://nmq.ou.edu/ CONUS- 1-km²/2 min res.

- Gauge-corrected radar estimates of precip and precip type (liquid, frozen, C/S)
- Orbit coincidence and 30 minute accumulation products with radar quality indices (RQI)

Rain Requirement- BROADER CONTEXT: Land (CONUS) 50 x 50 km

CONUS Mar 14 – July 16: GV MRMS vs. DPR/Combined Conditioned on 0.2 mm/hr threshold at FOV

Which products "compare" the best with MRMS? DPR NS (DPR MS and KuPR, similarly)
Relative trends generally consistent with global behavior over land

DPR Ku NS V3 vs. V4

L1-Required 50 x 50 km² area

(footprint matched, then averaged to 50x 50 km²)

Need 50%(25%) @ 1 mm/hr (10 mm/hr) bias and random

L1-Required 50 x 50 km² area

CORRA MS V3 vs. V4

L1-Required 50 x 50 km² area

Bias at 50 km resolution

RMSE at 50 km resolution
MAE at 50 km resolution

DSD: GV Disdrometer and Polarimetric Radar

Currently implemented

Minimum $D_m \sim 0.6$ mm; Sensitivity of approach at large D_m/ZDR due to limited sample of large drops/high ZDR (also modeling challenge)

For span of validity, when tested on independent data: Bias 1 - 10%, MAE 7 -15%

Val. Network GV-DPR matchups for broader view of DPR (NS) D_m Recall that L1 says ".....to within +/- 0.5 mm".....

GV and DPR similar, marked change in convective large D_m mode in V4

Combined (MS) and GV- good agreement; convective large D_m mode not present......

SNOW: "Demonstrate Detection"

GMI and PIP Instantaneous snowfall rates over Hyytiala, Finland GV site

GMI GPROF Seasonal Snow Winter Dec, 2014-Feb. 15

Skofronick-Jackson et al. 2016, submitted

Snow "detection" at FOV: MRMS, Passive Microwave and IR from IMERG

Snow "detection" is ambiguous....doesn't define what we do or do not detect"

Mean "miss" SWER based on fixed MRMS Z-S relationship

- Land ~1-1.4 mm/hr
- Ocean SWER ~0.57 m/hr

DPR Snow

V4: Precip > 0 for both MRMS and OPIR (DMB) MS FOVs, majority of MRMS beam heights < 1.5 km

Using PhaseNearSurface (surfLiqRateFrac): POD 87% (89%), FAR 9% (11%)

Œ

0

Analysis continues: But we can meet L1 requirements.....

RMSE at 50 km resolution MAE at 50 km resolution

- Datasets and basic approaches developed. Tweak, finalize, finish running analysis over mission to date
- Mission Review
- V5 products?

NASA GPM Ground Validation Field Efforts

GPM GV Lead / Co-Lead

PRF-LAUNCH

2012 2010 2011

2013

POST-LAUNCH

2014 2015-2016

LPVEX Finland High latitude

MC3E Oklahoma

Mid-latitude

Lake effect

Snow

GCPEX

SE Canada

MCS Rain. Hydrology

Mid-Latitude Mid-Latitude

IPHEX

North Carolina

Mid-Latitude

light rain Deep Convection Synoptic and Warm season Warm-Season Cold Season

Orographic rain Orographic, ocean Hydrology

rain, snow Hydrology

OLYMPEX

Washington

Mid-Latitude

GV Contributions to International Partner Campaigns

IFloodS

lowa

2006/07 Canada Lake effect and synoptic snow

2010, Brazil, INPE/CPTEC Tropical warm rain

ICE-POP

2012 EU- France/Italy, 2018, KMA- Korea orographic rain orographic snow

Process and GPM Algorithms

OLYMPEX Conducts first ever 3-aircraft stack (DC-8, ER-2, UND Citation) directly under the GPM Core satellite track within multi-ground-based polarimetric radar coverage

12/3/2015: A complex heavy precipitation event over the Olympic Mountains

Building the "column" - PSD working group

- GPM retreval algorithms need accurate assumptions in the vertical
- ➤ GPM needs to move beyond "convective vs. stratiform" thinking What are the "regimes" in global precipitation in terms of quantities algorithms need?
 - Particle habit, size distributions, fall speeds
 - Scattering properties
 - Riming/supercooled water/melting

How can GPM-GV address these unknowns?

- Statistical analysis of multi-campaign data and long term measurements to determine "regimes" and spatial and environmental correlations
- Process studies of campaign data using combined vertically-resolved and surface in situ measurements, and profiling/scanning radar and radiometer data
- End-to-end error characterization exercises. How do our assumptions impact retrievals?

4-D Physics and Algorithm Physical Consistency: Ground-to-Space

Prolific GV data sets exist from field campaigns and Wallops GV Site......

DSD consistency between DPR, NPOL and ground instruments- with observed intra-FOV variability

Snow: Work to Improve Space-Based *and* GV SWER Estimation

Finland, Hyytiala/SNEX Intra-event ρ -Variability w/GPM Overpass

Precipitation Imaging Package (PIP)/Pluvio and V_t -based ρ -D for case-specific Z-S IKA radar Z-S: 0.3° tilt; 500 m AGL

What do we or don't we detect and why?

Establish FOV detection thresholds over different land surface types and connect snowfall rate to physical character

Moiseev, VonLerber, Marks

ICE-POP Snow Experiment 2018 International Collaborative Experiment – PyeongChang Olympics Paralympics

- Winter extreme weather forecast demonstration (research and real-time decision support) and precipitation process research (e.g., measurement and prediction of orographic/terrain forced snow)
- KMA Lead, international investigator team
- GPM GV: D3R Radar, PIP, Pluvio, Parsivel deployments; GSFC/MSFC NUWRF Effort
- Work up: 2016-17; 2018 Intensive Observation Period (IOP) with 2018 Winter Olympics
- Coastal (Gangneung) and PyeongChang Mountain clusters: High res. international forecast models, dense surface observations (dual-pol/multi-freq. radars, gauges etc.), NIMR microphysics aircraft

Continued and Extended Integrated Hydrologic Validation.....E.g., IPHEX

- J. Tao et al., 2016
- J. Hydrology

- Improved NUWRF forecast of storm location/timing with GMI and SSMI/S satellite radiance assimilation
- Improved streamflow forecasting- with large improvement enabled by additional assimilation of stream flow in the DHCM
- Result sensitive to basin scale
 Tie in more physics and use approach for IFloodS,
 OLYMPEX or other similar data?

Applications extension/expansion!

Fig. 8. Forecast/hindcast results on May 15, 2014 using multiple QPEs (Q3, StageIV, NOXP data at 1.8° and 2.4° elevation angles and the hybrid data, and IMERG) and QPF from No.4MPE in headquaree catchingers in the Biggon River Basin (Basin 1-3, from left to right)

Fig. 9. Forecast results on May 15, 2014 using the improved NU-WRF QPFs by assimilating conventional ground-based observations (DA-CNT), and assimilating satellite-

GPM Core L1 Validation Work

Footprint and Area Selection

- 5 km DPR / 15 km GMI footprint "effective" resolution assumed
- 50 km x 50 km averages (of footprints), but also computing footprint bias and scaled random error (5 km/15 km footprints to 50 km scale; Steiner et al., 2003) to mitigate small sample numbers of 10 mm h⁻¹ rain rates experience over in 50 km grid boxes.

Instantaneous rain rates for "reference"

- MRMS Gauge-bias-adjusted radar subset over CONUS and central/southern U.S.
- Radar Quality Index = 1; NUBF > 80% FOV fill, 25% of 50 km box filled with > 0 mm/hr
- KwajPol/other sea-based radars (e.g., Middleton Island, AK) triplet of dual-pol estimators
- GPROF (GMI) Thresholds: currently use POP > 40% to ensure > 0 rain rates
- 5th/95th percentile outliers removed

DSD- Drop Size Distribution (D_m)

- GV Disdrometer-based polarimetric radar retrievals of D_m scaled up to Validation Network ~60-radar subset of U.S. WSR-88 dual-pol network.
- Multiple regimes (field campaigns and long term sites); data subset used in error testing

Snow (Detection)

- MRMS constraint of height off surface- Datatype 3.0 (< 1.5 km); precip type id= snow.
- GMI POP 40%, <50% Liquid precip fraction (also Combined Alg.); DPR "phase near surface"
- Snow index and METAR or like database

Defining an MRMS "reference" area for L1

MRMS best observation areas

Gamma assumptions?

GV-measured rain DSD limitations.....small drop impact?

DMT MPS vs. 2DVD Disdrometer

April 11 2016

Ocean: Kwajalein(KWAJ) and Middleton Island AK (PAIH)

March 2014 – June 2016

2BCMB MS

Footprint stats with

RMSE scaled to 50 km

Hard to get heavier rates in sufficient numbers at PAIH, but within L1 requirements otherwise

2BCMB MS

KWAJ

2AGPROF

Rain Rate [mm hr⁻¹]

KWAJ

2AGPROF

BIAS

FOV MAE

50x50 Scaled RMSE

^{*}DPR and KuPR both within L1 requirements at both locations